Shouting at Memory: Where Did My Write Go?

Vasileios Klimis &4
Queen Mary University of London, UK

—— Abstract

Non-Volatile Memory (NVM) promises persistent data, but verifying that promise on real hardware
is challenging due to opaque caching and internal buffers like Intel’s WPQ, which obscure the true
state of writes. Traditional validation methods often fall short. This paper introduces a novel
perspective: leveraging the subtle timing variations of memory accesses as a direct probe into write
persistence.

We present a software technique, inspired by echolocation, that uses high-resolution timers
to measure memory load latencies. These timings act as distinct signatures (“echoes”) revealing
whether a write’s data resides in volatile caches or has reached the NVM persistence domain. This
offers a non-invasive method to track write progression towards durability.

To reliably interpret these potentially noisy timing signatures and systematically explore complex
persistence behaviours, we integrate this echolocation probe into an active model learning framework.
This synergy enables the automated inference of a system’s actual persistency semantics directly
from black-box hardware observations. The approach is hardware-agnostic, adaptive, and scalable.
Preliminary experiments on Intel x86 — a platform where persistence validation is notably challenged
by the opaque Write Pending Queue (WPQ) — demonstrate the feasibility of our technique. We
observed distinct latency clusters differentiating volatile cache accesses from those reaching the
persistence domain. This combined approach offers a promising path towards robust and automated
validation of NVM persistency across diverse architectures.

2012 ACM Subject Classification Software and its engineering — Empirical software validation
Keywords and phrases Persistency Memory Semantics, Fuzz Testing, Model Learning
Digital Object Identifier 10.4230/LIPIcs. ECOOP.2025.41

Category Pearl/Brave New Idea

Acknowledgements Special thanks to Andy Rudoff, Non-Volatile Memory Software Architect at
Intel Corporation, for his insightful input on the development of the read-after-write timestamps
mechanism. Gratitude is also extended to Glynn Winskel for his thoughtful feedback on the
application of Event Structures in the intricate domain of memory persistency.

1 Introduction

Non-volatile memory (NVM) combines the speed of RAM with persistent data retention,
providing reliable storage that survives power outages. The write-handling mechanisms of
NVM are captured by formal persistency models, such as Px86 for Intel x86 architectures [37]
and PArm for ARM architectures [38]. These models aim to align with architectural
specifications, guiding developers in programming for NVM. However, they often lack
extensive empirical validation to confirm their real-world applicability.

Empirical validation serves two key purposes. First, it ensures hardware vendors adhere
to specified standards — an area with historical inconsistencies [2,4]. Second, it provides a
benchmark for testing whether theoretical persistency models align with actual hardware
behaviour. This process ensures that models reflect observable behaviours while avoiding
those that cannot occur on real machines, thus maintaining both soundness and completeness.

Persistency correctness is not merely academic but critical for system reliability. In
practical applications — financial services, healthcare, industrial automation — the failure to
respect persistency guarantees can undermine system integrity. For example, in financial

© Vasileios Klimis;
37 licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 41; pp.41:1-41:26

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:v.klimis@qmul.ac.uk
https://vasileiosklimis.github.io/portfolio/index.html
https://orcid.org/0000-0002-3173-8636
https://doi.org/10.4230/LIPIcs.ECOOP.2025.41
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

41:2

Shouting at Memory: Where Did My Write Go?

systems that rely on persistent storage, improper write ordering could violate transaction
atomicity guarantees, potentially contributing to data inconsistencies if other safeguards fail.
Healthcare systems with patient records might experience data loss or inconsistent state
retrieval after power events. In safety-critical domains, such as automotive control systems,
inconsistent recovery of calibration parameters or system state could lead to unpredictable
behaviour during operation. While modern systems implement multiple layers of protection
(transaction logs, checksums, reconciliation processes), the fundamental persistency guarantees
of NVM serve as a critical foundation for these higher-level reliability mechanisms. Ensuring
that persistency behaves as specified is therefore essential for building trustworthy systems
across these domains.

Challenges in Validating Persistency Semantics. Validating persistent memory semantics
involves significant challenges. A naive approach might involve inducing program crashes
by abruptly powering off the system and retrieving data from Non-Volatile Memory (NVM)
upon restart. However, this method only reveals the most recent write, leaving the order of
prior writes uncertain. Moreover, frequent power cycling is impractical for comprehensive
testing, and scheduling precise crashes proves nearly impossible.

Memory bus interception methods also face limitations, particularly with Intel x86
architectures [25]. This arises from the unique data pathway in Intel x86, where data destined
for memory first pass through a battery-backed buffer called the write-pending queue (WPQ)
in the memory controller [40] (see Figure 1). Since bus intercept observations occur after
data have left the processor, they fail to accurately reflect the true order of data persistence.

Persistence Domain

Intel-x86 CPU

memory controller

persistent

memory

<— caches—
Persistence Domain
Arm|CPU
-
sl persistent
L memory

Figure 1 Persistency pathway in Intel x86 and ARM Systems.

In the realm of memory consistency models, empirical validation is a well-established
practice. Tools like litmus [5] execute small multi-threaded tests, known as litmus tests,
on target machines to examine the visibility and sequencing of writes across threads. This
helps clarify the visibility and sequencing of writes among threads. However, unlike memory
consistency, a 1itmus-like approach to validating persistency is impractical, as programs
cannot directly detect data persistence. Stores may reside in various locations, such as caches,
the Write-Pending Queue (WPQ), host memory, or in Compute Express Link (CXL) devices.

V. Klimis

Representing Behaviour for Validation. Effectively validating NVM persistence — whether
checking hardware compliance against specifications like Px86/PArm or diagnosing deviations
— requires methods to precisely represent and compare expected versus observed behaviours.
This involves capturing the complex interplay of concurrency, weak memory effects, and
durability guarantees. While various formalisms exist for modelling concurrent systems
(e.g., state machines, Petri nets [34], algebraic approaches [18]), representing the specific
partial orders, fence semantics, and persistence states relevant to NVM validation poses
unique challenges. Finding a formalism capable of clearly expressing both the specified
model’s predictions and the potentially divergent behaviours observed on real hardware is
crucial for building robust validation techniques. We discuss our choice of formalism, Event
Structures [44], in Section 5.

Contributions. Our work makes two key contributions:

1) Introduction of Memory Echolocation Technique: We introduce memory echoloca-
tion, a conceptually architecture-agnostic timing analysis technique that uses instruction
latencies to non-invasively infer store locations. By analysing retrieval times, this ap-
proach identifies distinct timing patterns corresponding to memory hierarchy levels (e.g.,
caches, WPQ, NVM), revealing write progression towards persistence. Its effectiveness is
demonstrated on Intel x86, a challenging platform for validation.

2) Model-Learning Framework Leveraging Echolocation: We propose a model-
learning based validation framework that utilises memory echolocation (Contribution 1)
for black-box observation. This framework enables the iterative refinement of persistency
models based on observed timing data, facilitating scalable, adaptive, and more effective
validation. It is grounded in Fvent Structures and incorporates persistency properties to
accurately capture system behaviour.

2 Background

Non-Volatile Memory (NVM) technologies have introduced new challenges in the reliable
management of persistent data. As NVMs retain data across power failures, system designers
must ensure that updates to persistent state are crash-consistent — i.e., that data remains
consistent even in the event of unexpected interruptions. Achieving this requires explicit
reasoning about when writes leave volatile caches and become durable.

Modern architectures such as Intel-x86 and Arm support persistency through specialised
instructions that transfer modified data from volatile cache layers to the persistent domain.
These mechanisms enable fine-grained control over persist ordering, which is essential because
contemporary processors employ multi-level caching for performance, decoupling program
execution order from persistence visibility.

lllustrative Litmus Tests. To enforce correct persistency semantics, both Intel-x86 and
Arm provide architectural primitives that explicitly govern data flushes to the persistent
domain. The examples in Litmus Tests 1 and 2 illustrate minimal persistency patterns: if
a crash occurs after y is assigned the value 1, then the programmer expects z = 1 to have
been persisted, thereby ruling out states where y = 1 but z = 0.

41:3

ECOOP 2025

41:4

Shouting at Memory: Where Did My Write Go?

Litmus Test 1: INTEL. Litmus Test 2: ARM.
1:z+1 1: z+1
2: clflush(zx) 2: dc__cvap(z)
3 y<+1 3: dsb(sy)
4: y<+1

upon recovery: y=1=z=1

Intel-x86 Persistency Semantics. The Intel-x86 persistency model is inherently buffered, al-
lowing the persist order (the sequence in which writes are committed to persistent memory) to
diverge from the coherence order (the sequence in which writes become visible to threads) [37].
For instance, in the sequence = + 1;y <+ 1, recovery states after a crash may include
z=0y=0,z=1y=0,orx =1,y =1, but not x = 0,y = 1, which contradicts the
program order. This discrepancy arises due to reordering of persist operations.

Intel-x86 offers instructions such as ciflush(z) to enforce persistence. This instruction
flushes the cache line of x to the persistence domain. Variants such as clflushopt and clwb
provide similar guarantees with differing performance characteristics: clwb retains the cache
line, while clflushopt evicts it. These are non-blocking operations; they trigger persistence
asynchronously.

Arm Persistency Semantics. The Arm architecture offers a comparable, though architec-
turally distinct, model [15,38]. The instruction dc__cvap(z) transfers data to the persistent
domain, but requires a subsequent dsb(sy) barrier to ensure visibility. These synchronisation
mechanisms preserve persist order and enforce crash-consistency guarantees akin to those on
Intel-x86, as demonstrated in Litmus Test 2.

Persistence Domains and Observability. The scope of the persistence domain — that is, the
part of the memory hierarchy where data is guaranteed to persist across power failures — is
determined by hardware architecture. On Intel-x86 systems, writes are considered persistent
once they reach the memory controller (MC), often equipped with battery-backed buffers.
Enhanced ADR (eADR) extends this domain to include L2 and L3 caches [40], further
decoupling program execution from persistence observability.

In contrast, Arm architectures maintain a more confined persistence domain, which does
not extend to the memory controller, allowing for more direct and observable control over
write persistence.

Black-Box Model Learning. Validating persistency models requires a precise understanding
of how write and flush operations interact under relaxed behaviours. However, target
architectures often function as black boxes, concealing internal details such as persistence
ordering and flush timing. These behaviours are instead inferred from observable outcomes
of carefully orchestrated operation sequences.

Black-box model learning addresses this challenge by abstracting internal structures and
focusing on input-output behaviours. This approach systematically issues crafted sequences
of operations (e.g., writes, flushes) and observes the resulting persistence behaviour. Learning
algorithms [6] iteratively construct state-transition models that approximate the system’s
persistency semantics.

V. Klimis

For persistency validation, these learned models reveal how writes propagate to the
persistence domain under varying conditions, enabling the detection of inconsistencies or
undocumented behaviours. By systematically testing even opaque architectures, black-box
learning provides a rigorous framework for evaluating complex, poorly understood persistency
mechanisms [32].

Event Structures for Modelling Concurrent Behaviour. Persistent behaviours in concurrent
programs are naturally expressed in terms of partial orders. Fvent Structures [44] offer a
formal framework for modelling these behaviours. An event structure comprises a set of
atomic events, a causality relation that expresses dependencies, and a conflict relation that
defines mutual exclusions.

This representation is well-suited to reasoning about NVM persistency, which involves
partially ordered interactions among writes, flushes, and fences. In this work, we adapt event
structures to model the hypotheses explored during model learning. This enables precise

specification and comparison of observed system behaviours with theoretical expectations.

We present our specific adaptation of Event Structures for NVM persistency in Section 5.

3 Memory Echolocation

This section outlines a straightforward method for inferring store locations within the memory
hierarchy, drawing metaphorical inspiration from the concept of echolocation. By leveraging
timing analysis within the memory hierarchy, we can “map” where data is stored across
different memory layers. By doing so, it avoids the need for intrusive approaches like
crash-and-recovery, which disrupt system execution and involve directly inspecting memory

contents.
Litmus test Cache Host CXL
Attached Device

x—1 Memory Attached

-
ye—1

N - — .
z—1
echo $z < — z

Figure 2 Memory Echolocation.

3.1 Echolocation-Inspired Insight

Echolocation, as observed in nature, involves emitting a signal and interpreting its returning
echoes to infer the spatial arrangement of the environment. Our methodology mirrors this
approach in the context of memory systems. By performing a store operation, we create a
disruption in the memory hierarchy — analogous to emitting a signal. Subsequently, retrieving
this data produces measurable latencies, or “echoes”, that reveal the location and behaviour
of the memory hierarchy components involved.

41:5

ECOOP 2025

41:6

Shouting at Memory: Where Did My Write Go?

This analogy underscores the power of latency measurement as a diagnostic tool, revealing
patterns of memory residency and transitions across architectural layers. The emitted “signal”
in our case is the store operation, and the echoes are derived from the variability in memory
access times observed during data retrieval.

3.2 Timing as a Mapping Tool

At the core of our approach is the precise measurement of memory access times. Once the
initial store operation is performed, we measure the time required to fetch the data (Figure 2).
These timing measurements serve as unique fingerprints of the specific memory layer where
the data resides, offering a non-invasive mechanism to explore the memory hierarchy. For
example:

Extremely low latencies indicate L1 cache residency.
Intermediate latencies may correspond to L2 or L3 caches.
Longer latencies often point to the Write Pending Queue (WPQ) or main memory (RAM).

In extended setups, latencies may also reveal accesses to emerging technologies like
CXL-enabled memory.

Interpreting Latency Patterns. By correlating these retrieval times with the hierarchical
levels of the memory system — such as L1/L2/L3 caches, Write Pending Queue (WPQ), main
memory (RAM) and CXL — we can deduce where the stored value resides within the memory
architecture. Shorter access times indicate cache residency, while longer delays suggest data
retrieval from deeper layers like WPQ or RAM. These timing-based observations serve as
a guide to “echo-map” the memory hierarchy, pinpointing the location of stored data with
high precision.

4 Learning Persistency Models

Validating persistency semantics in modern systems is a complex and dynamic task, largely
due to the intricate interactions between memory management, concurrency, and system
failures. As systems grow in complexity, the number of potential states they can reach also
increases. Traditional validation methods often fail to capture the full spectrum of behaviours
that can emerge under different conditions. This is particularly true when dealing with
non-deterministic behaviours, such as those triggered by crashes, race conditions, and the
failure-recovery processes that involve complex memory state transitions.

To address these challenges and ensure more comprehensive validation process for persist-
ency semantics, we propose integrating model learning techniques. This approach leverages
the dynamic interplay between a knowledgeable Persistency Learner and an informative
oracle, enabling automated and optimised validation tasks in a black-box setting. The learner
formulates hypotheses about the system’s persistency behaviour and tests them against
the system through Membership Queries (MQ) and FEquivalence Queries (EQ), receiving
feedback from the oracle to validate or refine these hypotheses. This interactive, feedback-
driven process enables the model to evolve continuously in real time, uncovering previously
undetected edge cases, inconsistencies, and subtle aspects of persistency semantics that may
have otherwise gone unnoticed.

V. Klimis 41:7

e specs
A% 4 collaborative

° / update effort
o —n report bug
S
K refine H
=

larger candidate, g_[‘
<& predicted
Persistency model e EQe W __%
7
°f ®
o

Persistency
Learner

. Equivalence
Validator
MQs
e measured
o
test cases
new insights

’J Historical patterns 2

Figure 3 Cycle of the Model Learning Process for Persistency Semantics.

4.1 Persistency Model Learning in Action

The interaction between the learner and the oracle follows a systematic cycle, illustrated in
Figure 3. To explore this process, consider a program P with two consecutive writes: = « 1
followed by y < 1. Following a crash and recovery, the values of and y may vary, and
the state x = 0 and y = 1 could appear, even though this state is never observable during
normal execution. This inconsistency presents an opportunity for the model learner to refine
its hypothesis about write persistency.

To reason about the persistency of writes in this example, we use a toy model built
around the concept of a persist buffer. This buffer serves as an abstraction that captures
the intermediate state of writes that are not yet persisted but are still available within the
volatile memory hierarchy. The model incorporates the following elements:

m Writes: w € W, where W is the set of all writes executed by the program.
= Program Order: The relation <,, captures the sequential order of writes in P, where

w; =po W; means w; appears before w; in the program.

m Persist Buffer: B = (wy,ws,...,w,), the ordered sequence of writes currently in the
persist buffer, where w; € W and w; <, w; if write w; occurs before w; in the order
within the buffer.

m Persistence States: A write w can be in one of two states:

- B

Pw) w” if w has been persisted (written to persistent memory)
w) =
w® if w is still in the persist buffer (non-persistent)

Alternatively, we may use w™" to denote w?.

= Buffer Transitions: A transition B®)<%B0+1 represents a change in the contents of the
persist buffer B when write w € W occurs, resulting in a new buffer state B!, The
exact transformation is defined by specific persistence rules.

ECOOP 2025

41:8

Shouting at Memory: Where Did My Write Go?

Crash and Echo Recovery: X..,, represents a “soft crash” simulated using our non-
invasive echolocation technique. Instead of a physical crash, this step involves probing the
system using timed memory loads to infer the likely location (and thus persistence state)
of relevant variables. It approximates the outcome of a crash-recovery cycle without
disrupting the system. The specific mechanism for interpreting these probes is detailed in
Section 6.

Initially, the model assumes that all writes are persisted immediately upon execution. This
is captured by the following invariance rule for the persist buffer:

Immediate Persistence

vw € W, BOERG)

This simplistic assumption sets the stage for the learner to iterate and refine its understanding
of the persistency model. The learning process unfolds as follows, with the numbering
matching that in Figure 3:

1. Initial Hypothesis: The learner begins with the simplest hypothesis, assuming imme-
diate persistence. This predicts z = 1 and y = 1 post-crash. The hypothesis is submitted
as an Fquivalence Query (EQ) to the oracle, which tests it against the actual System
Under Learning (SUL).

2. Targeted Test Case Generation: To refine its understanding, the learner generates a
test case (a Membership Query, MQ) to probe the system’s crash recovery behaviour.
The test involves executing a sequence of operations followed by the echolocation probe:

TQ; . (Z‘ «— 1, Y 1, ij(;h())

The effectiveness of echolocation hinges on using carefully constructed, simple test cases
like TQ,. For validating persistency semantics, we employ litmus tests which are kept
intentionally small, typically involving only a few memory accesses and persistence-related
instructions (flushes, fences). The echolocation probe (X..p,) is strategically placed after
the sequence of operations whose outcome needs assessment, representing the timed load
measurements for relevant variables (here, z and y). Complexity in these test cases
must be minimised to avoid introducing extraneous micro-architectural effects that could
obscure the primary latency signal related to data location. Echolocation is therefore
suited for targeted microbenchmarks designed to probe specific persistency interactions,
not for direct timing analysis within complex application code.

The test case TQ, is submitted as an MQ to observe the actual system behaviour as
interpreted through the echolocation probe.

3. Oracle Feedback: The oracle executes the MQ on the SUL. Using the X..,, probe
mechanism (detailed in Section 6), it determines the persistence state of the variables.
Suppose the oracle concludes from the probes that x was non-persistent at the time of the
simulated crash, while y was persistent. This translates to an observed 'recovered’ state
of x =0,y = 1, which contradicts the learner’s initial hypothesis. This counterexample
(the test trace TQ, and its observed outcome) is returned to the learner.

4. Discrepancy Analysis and Model Refinement: The learner revises its hypothesis to
account for asynchronous persistence, acknowledging that writes pass through the persist
buffer before being persisted, with reordering possible. The updated rule is expressed as
follows:

V. Klimis

Relaxed Persistence

vw € W, BOELBOHD where BOHYD = BO U {w} and Vo' €
B(i),w’ =<pb W

This rule accounts for the transient nature of writes in the persist buffer, allowing them
to remain temporarily before being committed to persistent storage, with the persistence
order potentially non-deterministic.

To accommodate controlled operations that enforce the immediate persistence
of specific writes, the model is further refined with a dedicated rule for explicit flushes:

Explicit Flush Handling

Vw € W where w modifies z and w <,, CLFLUSH x, CLFLUSH 2 — wP

5. TIterative Hypothesis Testing: The learner continues generating test cases (MQs or
as part of EQs) to challenge the updated model. For instance:

TQ,,1 : (x < 1; CLFLUSH 25 y ¢ 1; Xeeno)

This test case examines whether the system flushes = to persistent memory before the
write to y occurs. If the X..,, probe (following y < 1) leads the oracle to conclude that
x is persistent but y is not, the inferred recovered state would be x = 1,y = 0.

4.2 Algorithmic Implementation of Persistency Learning

Algorithm 3 outlines the iterative learning process at a high level, highlighting the roles
of Membership Queries (MQs), Equivalence Queries (EQs), and the echolocation probe
(Xeeno). The algorithm addresses several practical considerations in model learning. It
establishes explicit termination conditions through mazlterations and convergenceThreshold
parameters. This ensures the learning process eventually terminates, even when a perfect
model cannot be achieved due to system complexity or non-determinism. The errorRate
tracking provides a quantitative measure of model quality, calculated as the proportion of test
cases where the model’s predictions differ from observed outcomes. Central to our approach
is the observationTable T, which serves as a structured knowledge repository mapping test
sequences to their observed outcomes. This table plays a crucial role in both generating test
sequences for equivalence queries and constructing refined hypothesis models. The learning
process has two distinct phases:

1. FEquivalence Query Phase: The algorithm generates test sequences based on the current
hypothesis and observation history. Each test is augmented with the echolocation probe
and executed on the System Under Learning. Discrepancies between predicted and
observed outcomes are collected as counterexamples. If no counterexamples are found,
the current hypothesis is accepted as equivalent to the target model.

2. Hypothesis Refinement Phase: When counterexamples are found, the algorithm selects
the most informative one to guide the generation of targeted membership queries. These

queries explore specific aspects of the system’s behaviour revealed by the counterexample.

Results from these queries update the observation table, which is then used to construct
a new hypothesis model.

41:9

ECOOP 2025

41:10

Shouting at Memory: Where Did My Write Go?

The HypothesisModel H maintains rich state, tracking the abstract persist buffer content
and the status of writes (wp or wB). The observed__outcome and predicted__outcome repres-
ent the inferred set of persisted variable states (e.g., x = 0,y = 1) after a test sequence. The
refinement process involves updating H'’s internal representation of buffering and persistence
rules based on the observed outcomes stored in the observation table. This algorithm strikes
a balance between theoretical soundness and practical applicability, accommodating the

inherent challenges in learning models of complex persistency semantics in real-world systems.

Algorithm 3 Persistency Model Learning with Echolocation.

Require: SUL (System Under Learning, provides Oracle access)
Require: mazlterations (maximum learning iterations)

Require: convergence Threshold (acceptable error rate)

Ensure: HypothesisModel H approximating SUL’s persistency behaviour

1: Initialise H (e.g., based on “Immediate Persistence” rule)
2: Initialise observationTable T < ()
3: iteration <0
4: errorRate < 1.0
5: while iteration < maxlterations and errorRate > convergenceThreshold do
6:
7 Generate test sequences Trg based on current H and observationTable T
8: counterezamples + ()
9: totalTests < 0
10: for each test sequence t € Tgq do
11: tprobe <= 5 Xecho
12: observed__outcome < Oracle(SUL, tprobe)
13: predicted__outcome < H.predict(t)
14: totalTests < totalTests + 1
15: if observed__outcome # predicted__outcome then
16: counterezamples <— counterezamples U {(¢, observed _outcome)}
17: errorRate < |counterexzamples|/totalTests
18: if counterexamples = () then
19: return H
20:
21: Select most informative counterexample ce = (tce, 0bsce) from counterezamples

22: Generate targeted Membership Queries Qg based on ce and observationTable T
23: for each query sequence g € Quq do

24: Gprobe <~ q; xccho
25: mgq__outcome <— Oracle(SUL, gprobe)
26: T + T U{(q, mq_outcome)}

27: Hpew < constructHypothesis(7T')

28: H + Hyew

29: iteration <— iteration + 1

30: return H with annotation of achieved errorRate

5 Modelling Formalism

To formally model the complex interactions between concurrency, memory consistency, and
NVM persistence guarantees, we adopt Event Structures [44]. This formalism provides a
natural and expressive framework well-suited to the challenges of reasoning about persistency
semantics, as detailed below.

V. Klimis

5.1 Rationale for Choosing Event Structures

Event Structures [44] provide a principled foundation for modelling persistency for several
key reasons:

True Concurrency and Causal Dependencies. Unlike interleaving models that artificially
serialise concurrent operations, Event Structures directly represent concurrency through
partial orders (causality) and mutual exclusion (conflict). This approach naturally captures
non-total orderings inherent in weak memory models, particularly the complex interactions
between memory operations, flushes, and fences in persistent memory systems.

Explicit Persistency Constraints. The core relations in event structures — causality, conflict,
and concurrency — provide a natural framework for encoding the fine-grained behaviours
specific to non-volatile memory systems. Causal dependencies represent ordering enforced
by barriers, while conflict relations precisely capture requirements such as write persistence
ordering (e.g., the “sfence” or dependent flush!), preventing executions that violate persistence
rules.

Compositionality. Persistency guarantees operate at multiple levels of abstraction. Event
Structures support modular reasoning, allowing models of individual instructions or
components to be composed without needing a monolithic global state representation. This
compositionality is essential for scaling verification to complex systems.

Leveraging these strengths, the next section provides our customised definition of
Persistent Event Structures, tailored to the specifics of NVM operations and drawing
parallels to concrete instruction sets like Intel x86 where relevant.

5.2 Persistent Event Structures

» Definition 1 (Persistent Event Structure). A persistent event structure for a program
P over a set of persistent memory locations X and values V is defined as a tuple: Ep =
(E,T,0,=po, Shbs # =rf, A), where:
FE is a finite set of events representing atomic memory operations;
T is a set of threads, each executing a sequence of events;
0 : E — T maps each event to its issuing thread;
=poC E? is the program order, a disjoint union of strict total orders on events within
each thread. Specifically, for any a,b € E, if a <, b, then 6(a) = 0(b), meaning both
events occur within the same thread. This relation enforces a sequential ordering of events
within each thread.
<mC E? is the happens-before relation, a partial order (transitive, irreflevive, and
antisymmetric) that extends program order (=p,C=np) and captures synchronisation
effects across threads;
C E? is the conflict relation, which captures mutual exclusivity between events that
cannot occur together in the same execution due to resource contention (such as conflicting
reads or writes to the same variable). The relation is irreflexive, symmetric and upward-
closed with respect to happens-before order: Ve,e' € E, e#e’ Ne <pp e1 Ne' Zpp €] = eq#e].

1 “Dependent flush” refers to the common pattern where the persistence guarantee of an asynchronous
flush like CLFLUSHOPT or CLWB is made effective relative to subsequent code via an ordering instruction
like SFENCE.

41:11

ECOOP 2025

41:12

Shouting at Memory: Where Did My Write Go?

= C E? is the resulting-from relation, where r =rf w means that the value read by event
r was written by event w. This relation links each read operation to the specific write that
provided its value.

A E — A labels each event with a memory operation from alphabet A.

The alphabet A of memory operations is structured hierarchically:

1. Basic Memory Operations:
Initialisation Operation O, representing the initialisation of all locations in persistent
memory appeared in the program, typically setting them to 0.
Read Operations R = {RY | + € X,v € V}, where R denotes reading the value v
from z.
Write Operations W = {W2 | x € X,v € V} U {0}, where W2 denotes writing v to z,
and 0 = {W0 | x € X} represents the initialisation of all locations to zero. All writes
are durable, meaning their effects may be observed after system recovery.
Read-Modify-Write Operations RMW = {RMW/ | x € X,f € F} denotes atomic
updates to x using the function f. These operations atomically read the value of z,
modify it using f, and write the result back to z, ensuring no interference from other
threads during execution. Common atomic operations in Intel architectures include:
lock xadd: Atomic fetch-and-add. Adds a value to x and returns its previous value.
lock cmpxchg: Atomic compare-and-swap. Compares z with a specified operand
and updates x if they match.
lock or/and: Atomic bitwise OR/AND. Performs a bitwise OR/AND operation
on x.
lock add: Atomic addition. Adds a value to z and stores the result atomically.

2. Synchronisation Operations:
Memory Fence (FE enm) ensures all preceding memory operations (loads and stores)
complete before any subsequent ones. In Intel architectures, this is enforced via the
MFENCE instruction.
Store Fence (FEsore) guarantees that all previous store operations complete before
any subsequent stores. This is implemented in Intel architectures via the SFENCE
instruction.

3. Persistency Operations:
Regular Flush FL = {flush x | * € X} writes back the cache line containing x
to memory, ensuring that all pending writes to that cache line are asynchronously
persisted. In Intel architectures, this is implemented via the CLFLUSH instruction.
Optimised Flush FL,,, = {flushopt x | x € X} also flushes the cache line containing x.
However, it imposes different ordering constraints: a flushopt x operation is ordered
only with respect to earlier writes to the same cache line; in contrast, a flush x
operation is ordered with respect to all writes, regardless of their cache line. In Intel
architectures, this functionality is provided by the CLFLUSHOPT instruction.
Write Back WB = {wb x | x € X} behaves like flushopt = but provides better
performance; both persist the cache line of x, but flushopt x invalidates it, whereas
wb & may retain it for reuse. Implemented in Intel architectures via the ‘CLWB¢
instruction.

We define WP C W as the subset of writes that have reached persistent memory. The
initialisation is always persistent: 0 € W7.

V. Klimis 41:13

The complete event alphabet is therefore:

A={0YURUW URMW U{FEpem, FEsore} U{FL, FLq,;, WB}

basic memory operations fences persist operations

Refining the previously defined resulting-from relation over the event alphabet, we have:
RxW D =, ={R\,0)|ze€X,veV,feFoc{0,ul,RMW}}

meaning;:
0 justifies reading zero from any location x;
a write of v to x justifies reading v from z.

A refinement of the program order is the adjacent program order relation, =<q4;C=po,
which captures the adjacency of events within the same thread. Formally, it is defined as:

a=gajb <= a=p DAVCEE, (a=ZpocNc=pb) = (c=aVc=D)

In other words, two events a and b are adjacent in the program order if there is no event ¢
such that a <,, ¢ <, b except for a and b themselves.

Events that are neither ordered by happens-before nor in conflict are considered concurrent.
To formally capture the independence of events across different threads, we define the
concurrency relation, denoted ||, as follows:

el || €y <—— 0(61) 7é 0(62) AN _|(61 <ub 62) AN _\(62 <ub 61) N _\(61#62).

The following example illustrates the application of event structures in this context.

lllustrative Example. Consider two concurrent processes, P; and Py (Figure 4), running on
an Intel x86 architecture and interacting with the shared variable ingredients .

Py P,
Wl ingredients « 1 check_ingredients « ingredients R!- W/
flushopt i ~clflushopt ingredients if check_ingredients = 2 then RZ,
w? ingredients < 2 ready_to_cook « true W,

Figure 4 A 2-thread toy persistent program.

A natural expectation is that if ready_to_cook is true, then ingredients should be 2.
However, due to the buffered persistence model of Px86, a crash and recovery may result in
a state where ready_to_cook < true persists while ingredients <— 2 does not.

The instruction citiushopt inmgredients invalidates the cache line containing ingredients
across the coherence domain, ensuring all cores either discard or update the cached copy.
However, it does not enforce immediate persistence and may be reordered with later stores.
Because of this, it is possible for the following sequence of events to occur:

1. P writes ingredients <— 1 followed by ingredients <— 2, but these updates remain in the
cache and have not yet persisted.

2. Pg reads ingredients = 2, sets the local variable check_ingredients tO 2, and subsequently
ready_to_cook ¢— true , with the latter being successfully persisted to memory.

ECOOP 2025

41:14

Shouting at Memory: Where Did My Write Go?

3. Before P executes ciflushopt ingredients , the system crashes. As a result, the persistent
state upon recovery can have:?

ready_to_cook = true /\ ingredients =0 (1)

contradicting the program’s expected logic: ready_to_cook =—> ingredients = 2.

This counterintuitive behaviour can, however, be avoided by using the stricter c1flush
instruction instead of clflushopt, as clflush prevents reordering with respect to any
writes.

Representing persistent program behaviour with Fvent Structures. The semantics of a per-
sistent event structure can be visualised using a directed acyclic graph. In the program
shown in Figure 4, each instruction is mapped to a modelled action, highlighted next to it.
These actions represent reads, writes and flushes in the program. Figure 5 (left) depicts the
semantics of the concurrent execution of P, and P, as an event structure graph, where solid
edges show happens-before order, dashed edges indicate resulted-from, and saw-like edges
denote conflicts. When the right thread P, reads the value 2 from ingredients , which was
written by the left thread P;, P; passes a message to P,. Under the Intel-x86 architecture,
message passing ensures that the instruction writing the message (W?) is executed and ordered
before the corresponding read instruction (R?) in P,. This ordering is implicitly captured by
the resulted-from relation, which links reads to their corresponding writes.

—> happens before = ___» resulted-from o conflict (D

Figure 5 Event Structure semantics for the program in Figure 4, illustrating the happens-before
relation with flushopt (left) and flush (right). The affected region of the graph is shaded to indicate
where the changes occur.

Replacing flushopt i with (flush i enforces a stricter happens-before ordering by intro-

ducing an additional edge from flush i to W? . As a result, this guarantees that whenever
R? is executed, i has already been persisted.

5.3 Alloy Encoding

We encode the semantics of persistent event structures using the Alloy modelling language [20],
a declarative framework that expresses systems as relational structures. This encoding
facilitates the analysis of program behaviour under diverse memory access patterns. The
model is structured into a set of entities, each representing a distinct aspect of memory

2 Upon recovery, the possible values are: ready_to_cook = ingredients € {0, 1,2}, which accounts for all
potential states.

V. Klimis

semantics. Figure 6 illustrates the hierarchical relationships between these entities and their
interconnections within the event structure. The corresponding Alloy code defining these
entities is provided in Listing 1.

conflict

!

happens-before
t

-=

1
v I v

GCED|

location location
value

1

~= resulting-from =

Write PersistOp

location

RMW

location

MemoryFence

StoreFence

Persisted

Figure 6 Hierarchical structure of entities (signatures) encoded in Alloy: black boxes represent
memory operation events, with solid arrowed lines indicating inheritance. Coloured boxes represent
relations that map the events within the outer black boxes to the corresponding entity indicated by
the coloured box. Dashed arrow-headed lines denote event-to-event relationships.

WriteBack

Listing 1 Alloy specification for memory model.

abstract sig Thread {}
abstract sig Event {

thread some Thread,
adj_po set Event,
hb : set Event,
conflict: set Event,
rf : lone Event

¥

sig Location {}

sig Write extends Event {
location: set Location,
value one Int

s

sig Read extends Event {
location: one Location,
value one Int

I

sig RMW, Fence extends Event {}

sig MemoryFence, StoreFence extends Fence {}

sig PersistOp extends Event {
location: one Location

i

sig Flush, FlushOpt, WriteBack extends PersistOp {}

sig Persisted in Write {}

one sig Init in Persisted {}

In Alloy, memory events are defined as signatures, introducing new types in the model.

The Event signature serves as the supertype, with specialised event types extending it via
the extends keyword. Events are structured through relations that link their attributes to
other entities (e.g., Read , Write) or within the same entity (e.g., Event LN Event). These
relationships are further constrained using facts — axiomatic formulae that Alloy assumes to
be always true, shaping the space of possible examples and counterexamples generated by
the Alloy analyser. For instance, to enforce that the relation adjacent program order (adj_po)
applies only within the same thread, the following fact is defined:

41:15

ECOOP 2025

41:16

Shouting at Memory: Where Did My Write Go?

Listing 2 An Alloy fact.

fact ProgramOrderScoped {
all el, e2: Event | el -> e2 in adj_po implies el.thread = e2.thread
+

To illustrate how our Alloy model is executed to generate concrete instances, consider
the following predicate, volatile. It expresses conditions under which a write w could be
considered volatile when event e occurs. The Alloy analyser systematically explores the
model to find instances satisfying this predicate, revealing concrete memory event orderings
that meet these constraints.

Listing 3 Checking volatility conditions in memory events.

pred volatile[w: Write, e: Event] {

/* No Flush operation on the same location precedes e in the happens-before
relation */

no f: Flush | f.location = w.location and f -> e in hb

/% No FlushOpt or WriteBack operation on the same location precedes w %in hb

¥ with a Fence event occurring between them */

no f: FlushOpt + WriteBack, fence: Fence |

f.location = w.location and f -> fence in hb and fence -> e in hb

By executing Alloy’s run command with this predicate, we generate concrete executions
that reveal scenarios where a write remains volatile. The analyser constructs instances that
adhere to the specified constraints. One such instance, discussed in Figure 5, satisfies the
volatile predicate and can be obtained by executing the following command, which explores
possible executions within a bounded model of 7 events, 2 threads, and 3 memory locations:

run { some w: Write, e: Event | volatile[w, e] } for 7 Event, 2 Thread, 3 Location

6 Implementation and Feasibility Demonstration

As a foundational step, we developed a time-based measurement framework designed to
explore memory access patterns, inspired by echolocation principles. This initial framework
leverages high-resolution timestamps to analyse memory fetch latencies, enabling the identi-
fication of subtle timing variations. Central to this is the CPU’s Time Stamp Counter (TSC),
which provides the high-resolution timings necessary to observe micro-level memory access
variations.

6.1 Measurement Technique

Our preliminary implementation, used to generate the latency data shown in Figure 7 and
Table 1, employs a microbenchmark written in C (available at DOI 10.5281/zenodo.15045528).
The core measurement technique involves timing individual memory load operations using
the TSC. Specifically, we utilise the rdtscp® instruction, accessed via inline assembly, to
obtain cycle counts immediately before and after the target memory load operation (e.g.,
sum += array[i] in our benchmark code).

3 Read Time-Stamp Counter and Processor ID is an assembly instruction available on x86 processors
that retrieves the current value of the CPU’s time-stamp counter (T'SC) along with the processor ID.
This instruction offers a high-resolution timing mechanism often used for performance monitoring and
benchmarking, and is partially serializing.

https://doi.org/10.5281/zenodo.15045528

V. Klimis

To prevent the compiler from optimising away the timed memory load, the target memory
array (array) and the variable accumulating the result (sum) are declared volatile. Memory
for the array is allocated using posix_memalign to ensure 64-byte alignment, minimising
potential variations due to unaligned accesses.

The elapsed cycle count (end cycles - start cycles) for each load is then converted
into nanoseconds. This conversion uses the CPU’s clock frequency, which is determined
dynamically at the start of the benchmark by parsing the ’cpu MHz’ field from /proc/cpuinfo
on the Linux test system. We acknowledge this frequency detection method is specific to the
Linux environment.

In the specific experiment designed to populate the latency distribution (Figure 7), each
timed load access to an array element array[i] was preceded by a write to that element
and an explicit clflush instruction (also invoked via inline assembly) targeting its cache
line. This was done to ensure that the subsequent timed load would likely fetch data from
deeper levels of the memory hierarchy (e.g., L3, WPQ, DRAM) rather than potentially
hitting in L1/L2 caches, allowing us to observe the full spectrum of access latencies. The
benchmark performs numerous such timed accesses across a large memory region and repeats
the entire measurement process multiple times. Individual nanosecond latency measurements
are recorded (written to a CSV file in our implementation) to allow for detailed statistical
analysis and visualization.

6.2 Feasibility Results

Our tests, carried out on an Intel® Xeon® E-2286G CPU (4.00 GHz, 14 cores) running Linux
kernel version 4.18.0 on Red Hat Enterprise Linux 8, demonstrated that we could differentiate
memory access latencies across various hierarchical levels based on these measurements. In
Figure 7, we present a distribution plot based on approximately 25 million memory fetch
operations. The observed latencies ranged from as low as 15ns for the fastest L1 cache to
up to 10,000 ns for the slowest swapped memory on disk. The vertical axis represents the
order in which these memory accesses occurred, serving only to visualise the distribution of
memory accesses across the entire dataset.

The fetch latencies are clearly segmented into six distinct zones, as highlighted by the
shaded regions in the plot and detailed with range values in Table 1. These zones correspond
to the hierarchical memory locations of the test system: L1 cache, L2 cache, L3 cache, Write
Pending Queue (WPQ), DRAM, and swapped memory. This clear segmentation suggests the
potential of our approach in profiling memory access patterns and indicates the reliability of
timestamp-based latency measurements for inferring data location.

When measuring memory fetch latencies, the elapsed time includes not only the pure
data fetch duration but also several overheads. These include the time required to issue
the memory access command, the execution time of the memory access instruction itself,

and the small but consistent cost of retrieving timestamps using the rdtscp instruction.

Additionally, micro-architectural factors, such as cache coherence traffic, prefetcher activity,
pipeline effects, resource contention, or cache invalidation caused by instructions like c1flush,
can contribute noise to the measured time. While these overheads and noise sources are
present in the absolute measurements, they often remain relatively consistent or manifest as
outliers across different fetches under controlled conditions.

For our purpose, which is to differentiate memory access locations within the hierarchy
(e.g., cache, write pending queue, DRAM), the absolute latencies are less significant than
the relative differences and distinct clusters observed between fetch times originating from
different levels (Figure 7). These large differences tend to cancel out fixed overheads, allowing

41:17

ECOOP 2025

41:18

Shouting at Memory: Where Did My Write Go?

le7

254 L1 Cache .
L2 Cache !
L3 Cache }
WPQ
DRAM
Swap
2.04
o 1.5 A
o
c
©
S
[%)
=
n
n
3}
v
>
< 1.04
0.5 4
0.0 4

102

10° 10*

Access Time (ns) [Log Scale]

Figure 7 Memory Access Latencies Across Different Levels of the Hierarchy.

Table 1 Latency Ranges and Corresponding Memory Locations. The highlighted rows denote
the persistence domain.

Latency Range [ns]

Memory Location

Description

10-25 L1 Cache The closest and fastest memory tier to the CPU (64 KB per core),
providing ultra-low latency for frequent data access.
30-35 L2 Cache A slightly larger (256 KB) but slower memory cache near the CPU
core, designed for rapid access to recently used data.
75-125 L3 Cache A shared cache among multiple CPU cores, larger in size (12 MB)
but slower due to increased complexity in access and coordination.
150-500 Write Pending Queue A battery-backed buffer where data becomes persistent before it
(WPQ) leaves the processor.
1500-2300 Main Memory Represents direct access to DRAM, where latency is higher due
(DRAM) to physical distance and slower access times compared to cache
memory.
500010000 Cached/Prefetched Encompasses memory pages swapped to disk. Cached or prefetched

Swap Pages and Fully
Swapped Memory on
HDD

pages (lower latency) are in RAM, while fully swapped pages
(higher latency) require physical disk access.

V. Klimis

us to reliably identify the memory hierarchy level from which the data is being fetched
based on its characteristic latency range. This approach ensures that variations in fetch
latencies used for inference are primarily attributable to the memory location itself rather
than extraneous factors, although careful statistical analysis and threshold selection (see
Section 8) are needed to handle ambiguity.

6.3 Application to Persistence Validation

The core idea of using echolocation for validation is to map the measured memory load
latencies, discussed in the previous subsection, to an inferred persistence state for a given
write. This allows us to approximate the outcome of a crash-recovery cycle non-invasively.

» Definition 2 (Inferred Persistence State from Latency). Let L(w) be the latency measured
by the echolocation probe for write w. Let Tpp be the experimentally determined minimum
latency threshold indicating entry into the persistence domain, derived from the observed
latency ranges (Table 1). On our test machine, Tpp ~ 150 ns, corresponding to the lower
bound of WPQ access times. We define the inferred persistence state function P as:

Plw) w? if L(w) > Tpp (Inferred Persistent)
w) =
wB if L(w) < Tpp (Inferred Non-Persistent)

Crucially, to mitigate potential misinterpretation due to measurement noise near the threshold
(as discussed in Section 8), we adopt a conservative approach when selecting Tpp: it is aligned
with the upper bound of non-persistent latency clusters plus a safety margin. This prioritises
soundness (avoiding false positives for persistence). The oracle function within the model
learning algorithm (Algorithm 3) uses this mapping 75, based on the conservatively chosen
Tpp, to determine the definitive w® or w® state contributing to the observed_outcome from
the raw latencies measured during the X .,, step.

With this mapping (Definition 2) established, we can validate correctness conditions
required after a potential crash. For example, consider the litmus test from Figure 4 and its
instrumented version in Figure 8. The expected post-crash condition is:

ready_to_cook = — ingredients € {0,1,2} (2)

Validation of this condition relies on determining the state of ready_to_cook after the program
sequence. Our approach uses the X,.;,, probe (executed after the write ready_to_cook == true
in Figure 8) to measure L(ready_to_cook). The Oracle then applies Definition 2:

if L(ready_to_cook) > Tpp, then ﬁ(ready_to_cook) = ready_‘co_cook73

and the condition (Equation (2)) must hold for the validation to pass. Figure 8 illustrates
how this check, driven by the echolocation-derived status, is conceptually embedded in the
validation logic.

Py P’
ingredients « 1 check_ingredients « ingredients
clflushopt ingredients if check_ingredients = 2 then

ingredients « 2
latency(ready_to_cook « true) >= PERSISTENCE_THRESHOLD
implies ingredients € {0, 1, 2}

Figure 8 Instrumented 2-Thread Program for Persistence Validation.

41:19

ECOOP 2025

41:20

Shouting at Memory: Where Did My Write Go?

This implementation demonstrating the echolocation probe and its application concept
represents a foundational step. As discussed in Section 10, future work involves implementing
the full model learning framework and extending validation to more complex scenarios and
diverse hardware.

7 Scope and Applicability

The previous sections introduced memory echolocation as a technique for non-invasively
probing data location within the memory hierarchy (Section 6) and framed its use within
a model learning cycle for validating persistency semantics (Section 4). This combined
approach aims to provide a more robust, adaptable, and hardware-agnostic methodology
compared to existing techniques. This section discusses the broader scope and applicability
of this approach, particularly concerning different hardware architectures and potential
extensions.

Hardware Agnosticism and Generality. A key advantage of our proposed methodology lies in
its software-based nature. Unlike hardware bus interception methods, which require physical
probes, platform-specific knowledge, and may be hindered by component integration (e.g., on
SoCs) or internal buffering (like Intel’s WPQ), echolocation relies solely on timing standard
memory access instructions. This makes the fundamental probing technique portable across
any architecture that provides a sufficiently high-resolution timer accessible from software
(such as the TSC on x86, or equivalent counters on ARM, RISC-V, etc.). When coupled
with the black-box model learning framework, which adapts based on observed outcomes,
the overall approach offers a path towards a unified validation framework applicable across
diverse hardware platforms, reducing the need for architecture-specific tooling.

Applicability to ARM Systems. While the challenge of the WPQ makes software-based
validation particularly appealing for Intel x86, the echolocation technique offers significant
advantages for ARM architectures as well:
Non-Invasiveness and Accessibility: Echolocation avoids the cost, complexity, and
potential physical impossibility of hardware bus probing, which is especially relevant
for highly integrated ARM-based Systems-on-Chip (SoCs) commonly found in mobile,
embedded, or IoT devices where physical access might be limited or impractical.
Unified Methodology: It provides the same validation methodology used for other
architectures, simplifying cross-platform testing, comparison, and tool development, rather
than requiring different approaches (e.g., software for x86, hardware probes for ARM).
Future-Proofing: As ARM architectures evolve, particularly in server or high-
performance domains, they may incorporate more complex cache hierarchies, memory
controllers with internal buffering, or technologies like CXL, potentially obscuring the
exact persistence boundary from external probes, similar to the WPQ issue. Echolocation,
being software-based, remains applicable regardless of these internal complexities.
Complementary Insights: Even on ARM systems where bus snooping might be feasible,
echolocation provides timing data reflecting the state before data necessarily reaches
an externally snoopable point. This can offer complementary insights into buffering or
ordering effects internal to the CPU core, cache hierarchy, or SoC interconnect.
Therefore, the motivation for using echolocation on ARM extends beyond merely bypassing
a WPQ-like issue; its non-invasiveness, generality, and accessibility make it a valuable tool
for validating persistency on these platforms.

V. Klimis

Synergy of Echolocation and Model Learning. The proposed approach leverages the
synergy between the two techniques. Echolocation provides the fine-grained, albeit potentially
noisy, observational data about memory state transitions without system disruption. Model
learning provides the structured framework (inspired by L*, as discussed in Section 4)
to systematically generate test cases (MQs, EQs), interpret the noisy observations from
echolocation within the context of a hypothesis, identify discrepancies, and iteratively refine
a model of the system’s actual persistency behaviour. This allows for uncovering subtle or
undocumented behaviours that might be missed by static analysis or purely hardware-based
methods.

Potential for Broader Application. While this paper focuses on validating NVM
persistency semantics, the underlying principles might be adaptable. The ability to infer
data location in the memory hierarchy via timing could potentially be applied to study cache
behaviour, coherence protocol actions, or even aspects of memory consistency, although
these applications would require careful calibration, different instrumentation strategies,
and potentially more sophisticated analysis techniques to deconvolve timing effects. These
remain interesting avenues for future exploration.

Despite its promise, this methodology is not without challenges. The accuracy of
echolocation can be affected by micro-architectural noise, and the completeness of model
learning depends on the quality of test generation and the ability to explore relevant system
states. The next section delves into these potential threats to validation and outlines
mitigation strategies.

8 Threats to Validation

The proposed validation approach applies echolocation and model learning to systematically
analyse persistency semantics. While promising, its robustness, accuracy, and generality
must be scrutinised to strengthen its credibility.

8.1 Accuracy of Echolocation as a Proxy for Crash Behaviours

Echolocation is used to approximate memory access patterns occurring during recovery by
analysing write echo times. As demonstrated in Figure 7, the access time zones are generally
well-segmented for different memory regions. However, very few access times fall ambiguously
between these zones, making it difficult to assign them definitively to a specific storage
hierarchy. Such ambiguities may lead to misinterpretations of persistency behaviours.

Mitigation. To resolve this, we propose a two-pronged approach. First, outlier detection
methods, such as the Local Outlier Factor (LOF) [11], can identify and potentially filter
anomalous access times likely caused by transient system noise, improving the clarity of
latency clusters. Second, to directly address the ambiguity of times falling near zone

boundaries, we adopt the conservative threshold selection strategy detailed in Definition 2.

By setting the persistence threshold 7pp based on the upper bound of non-persistent levels
plus a margin, we explicitly trade off potentially missing some borderline persisted writes
(completeness) for increased confidence that inferred persistence is correct (soundness), thus
minimising misinterpretations arising from ambiguous timings.

41:21

ECOOP 2025

41:22

Shouting at Memory: Where Did My Write Go?

8.2 Coverage of System States and Edge Cases

While the proposed validation approach uses model learning to penetrate the actual system
and explore edge cases, some rare or complex execution paths, particularly those that are
non-deterministic or timing-dependent, may remain untested, leading to incomplete coverage
and potentially missing subtle persistency behaviours.

Mitigation. Our chosen modelling language, Alloy [20], helps mitigate coverage gaps through
its exhaustive analysis within bounded scopes. By encoding the persistency semantics
(including timing-related constraints where possible via ordering relations) derived from our
model learning, Alloy can explore potential interleavings and states, including those leading
to non-deterministic outcomes. Its relational logic is adept at exploring configurations that
might expose subtle bugs related to concurrency or complex interactions, complementing the
execution-based approach of model learning. Prior work [16,24,37,38] confirms its utility
in finding subtle memory model issues. Furthermore, the iterative nature of both Alloy
model refinement (reacting to discrepancies found during validation) and the overarching
model learning cycle (Section 4) helps systematically expand coverage as inconsistencies are
uncovered and the model of system behaviour improves.

8.3 Assumptions in the Initial Model Hypothesis

The model learning process, as discussed in Section 4.1, begins with a simplistic initial
hypothesis. While this serves as a foundation for systematic refinement, it may inadvertently
introduce constraints or assumptions that bias subsequent learning steps. Such biases
could narrow the exploration of the state space, leading to an incomplete or inaccurate
understanding of the system’s persistency semantics.

Mitigation. To minimise initial hypothesis bias, we adopt several strategies. First,
the learning process can be initiated with different starting assumptions beyond simple
immediate persistence (e.g., hypotheses incorporating relaxed ordering, different buffering
behaviours). Second, we explicitly leverage existing formal persistency models from the
literature (e.g., Px86 [37], PArm [38]) as initial hypotheses or baselines for comparison
during the learning process on relevant platforms. This provides both a sanity check and
ensures our learned models are contextualised against established specifications, adding rigor
to the validation of our assumptions and conclusions.

Addressing these threats is crucial for realising the full potential of this validation
approach. By systematically mitigating these risks, the methodology can be refined to
deliver robust insights into persistency semantics across diverse systems.

9 Related Work

Memory Consistency Model Validation. Significant research has focused on empirically
validating memory consistency models across architectures such as x86 [5,41], IBM Power [39],
and Arm [3], as well as GPUs [2] and hybrid CPU/FPGA systems [19]. Recent work extends
these models to support features like virtual memory [42] and non-temporal accesses [36].
Traditional multi-threaded validation methods, while effective for consistency, struggle to
validate persistency models, as they cannot distinguish between data retrieved from volatile
caches and persistent memory.

V. Klimis

Testing Persistent Programs. Tools such as PMTest [29], Pmemcheck [23], and PMAT [22]
test persistent programs by embedding assertions to validate memory persistency guarantees
dynamically. XFDetector [28] addresses pre- and post-crash instruction interactions, while
PMFuzz [27] generates test cases to maximise path coverage, focusing on persistency-related
operations. These tools generally rely on vendor-provided architectural specifications to
evaluate whether a program violates persistency guarantees.

Event Structures for Modelling Relaxed Memory. The use of Event Structures (ES) to
model systems with relaxed memory ordering guarantees has gained significant attention in
recent research [13,14,21,35]. These studies highlight the adaptability of ES in reasoning
about concurrency, demonstrating their ability to effectively capture the complexities of
weak-memory models across a wide range of architectures and scenarios.

Active Model Learning. Several algorithms have been proposed for learning models across
different types of automata, as explored in various studies [1,7,10,12,17,31]. These algorithms
can extend their capabilities to learning models of complex, distributed systems, including
assemblies of communicating automata [9]. The versatility of these approaches makes them
well-suited for testing intricate systems and ensuring the accuracy of persistency models.

Timing-Based Inference. Several studies have leveraged hardware performance counters
to track memory access locality, primarily in DRAM [8, 26, 30, 33]. Our memory echo-
location technique shares closer methodological similarities with CacheQuery [43], which
employs timing-based measurements to detect cache side-channel vulnerabilities. However,
our approach differs fundamentally in both objective and execution. While CacheQuery
focuses on cache hierarchies to uncover security weaknesses, we extend timing-based in-
ference to persistent memory systems, specifically analysing persistency properties rather
than information leakage. Moreover, our method accounts for system-specific variations in
persistence behaviour across different architectures, addressing challenges such as write-back
buffers, ADR domains, and persistence ordering guarantees — factors beyond CacheQuery’s
security-oriented scope.

10 Conclusion and Future Work

This paper introduced a software-centric methodology aimed at overcoming persistent chal-
lenges in validating NVM semantics on real hardware. Our proposed approach uniquely
combines fine-grained memory access timing analysis (echolocation) with the structured
exploration capabilities of active model learning. We presented the core echolocation tech-
nique, demonstrating experimentally on an Intel x86 platform its feasibility for non-invasively
distinguishing memory hierarchy levels, including the NVM persistence domain, based on
load latency signatures. Furthermore, we outlined how these timing probes serve as the
essential black-box observation mechanism within a proposed model learning framework,
enabling the automated inference of persistency behaviours. While the full integration
of the learning component remains future work, this synergistic approach, conceptually
underpinned by Fvent Structures, represents a promising direction towards scalable, adaptive,
and hardware-agnostic NVM validation.

41:23

ECOOP 2025

41:24

Shouting at Memory: Where Did My Write Go?

10.1 Future Work

Adaptive Echolocation: Enhancing Robustness and Accuracy. As highlighted in our
discussion of threats (Section 8), precise analysis using echolocation is complicated by inherent
noise in modern systems arising from OS jitter, concurrent processes, architectural variability,
micro-architectural interference (e.g., prefetchers, coherence traffic), and even thermal effects.
To address this, future work will explore adaptive algorithms capable of dynamically adjusting
to system state and filtering noise during real-time latency interpretation. Techniques
potentially include online statistical filtering, change point detection, or lightweight machine
learning models trained to recognise characteristic latency patterns amidst noise. The goal
is to significantly improve the accuracy and reliability of inferred persistence states across
diverse architectures, including complex emerging systems incorporating technologies like
CXL-attached memory. Successfully learning distinctive latency patterns under varying
conditions will enhance data residency detection, identify performance anomalies, and allow
more confident prediction of memory state transitions.

Learning Event Structure Models of Persistency. Building on our proposed formalisation
using Event Structures (Section 5), a key next step is developing algorithms to automatically
infer these structures from echolocation observations. The input would consist of execution
traces (sequences of operations generated by the learner) paired with their outcomes (inferred
persistence states of relevant variables) obtained via the echolocation probe. The core
challenge is to learn the specific causal (<j;) and conflict (#) relations that accurately model
the target system’s possibly undocumented or non-deterministic NVM persistency behaviour.

In conclusion, while the proposed approach represents a promising step forward in
persistency validation, it is important to acknowledge that it is not a catch-all solution.
The complexity and variability of memory subsystems pose ongoing challenges. Continued
research will be essential to refining coverage of dynamic memory conditions beyond our
current scope.

11 Data Availability Statement
The Alloy model discussed in Section 5.3, along with instructions for running it, is available

on Zenodo (BT REwezd). Additionally, we provide the fetch latencies plotted
in Figure 7, along with the C script used to obtain them.

—— References

1 Fides Aarts and Frits Vaandrager. Learning I/O Automata. In CONCUR 2010 - Concurrency
Theory, 2010.

2 Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema,
Daniel Poetzl, Tyler Sorensen, and John Wickerson. GPU concurrency: Weak behaviours and
programming assumptions. In ASPLOS, 2015.

3 Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc Maranget.
Armed cats: Formal concurrency modelling at arm. ACM Trans. Program. Lang. Syst., 2021.
doi:10.1145/3458926.

4 Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Fences in weak memory models.
In Computer Aided Verification, 2010.

5 Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Litmus: Running tests against
hardware. In Tools and Algorithms for the Construction and Analysis of Systems, 2011.

https://doi.org/10.5281/zenodo.15045528
https://doi.org/10.1145/3458926

V. Klimis

6 Dana Angluin. Learning Regular Sets from Queries and Counterexamples. Inf. Comput., 1987.
doi:10.1016/0890-5401(87)90052-6.

7 Dana Angluin and Miklés Csundefinedrés. Learning Markov Chains with Variable Memory
Length from Noisy Output. In COLT, 1997.

8 Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das, Matthew Hicks,
Yossi Oren, and Todd Austin. Anvil: Software-based protection against next-generation row-
hammer attacks. In Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2016.

9 B. Bollig, M. Leucker, J. Katoen, and C. Kern. Learning Communicating Automata from
MSCs. IEEE Transactions on Software Engineering, 2010.

10 Benedikt Bollig, Peter Habermehl, Martin Leucker, and Benjamin Monmege. A Fresh Approach
to Learning Register Automata. In DLT, 2013.

11 Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jorg Sander. Lof: identifying
density-based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, 2000.

12 Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. Active Learning for Extended
Finite State Machines. Form. Asp. Comput., 2016.

13 Simon Castellan. Weak memory models using event structures. In Vingt-septiémes Journées
Francophones des Langages Applicatifs (JFLA 2016), 2016.

14 Soham Chakraborty and Viktor Vafeiadis. Grounding thin-air reads with event structures.
Proc. ACM Program. Lang., 3(POPL), 2019. doi:10.1145/3290383.

15 Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang. Revamping hardware
persistency models: View-based and axiomatic persistency models for intel-x86 and armv8. In
PLDI, 2021.

16 Nathan Chong, Tyler Sorensen, and John Wickerson. The semantics of transactions and weak
memory in x86, Power, ARM, and C++. In PLDI, 2018.

17 Samuel Drews and Loris D’Antoni. Learning Symbolic Automata. In TACAS, 2017.

18 C. A. R. Tony Hoare, Bernhard Moller, Georg Struth, and Ian Wehrman. Concurrent Kleene
Algebra. In CONCUR, 2009.

19 Dan lorga, Alastair F. Donaldson, Tyler Sorensen, and John Wickerson. The semantics of
shared memory in intel CPU/FPGA systems. Proc. ACM Program. Lang., 5(OOPSLA), 2021.
doi:10.1145/3485497.

20 Daniel Jackson. Alloy: a language and tool for exploring software designs. Commun. ACM,
2019. DOLI: 10.1145/3338843. doi:10.1145/3338843.

21 Alan Jeffrey and James Riely. On thin air reads towards an event structures model of relaxed
memory. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), 2016.

22 Louis Jenkins and Michael L. Scott. Persistent memory analysis tool (PMAT). In 11th
Annual Non-Volatile Memories Workshop, 2020. URL: https://louisjenkinscs.github.io/
publications/PMAT_EA.pdf.

23 Tomasz Kapela. An introduction to pmemcheck, 2015. URL: https://pmem.io/blog/2015/
07/an-introduction-to-pmemcheck-part-1-basics/.

24 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F.
Donaldson. Taking back control in an intermediate representation for gpu computing. Proc.
ACM Program. Lang., 7(POPL), 2023. doi:10.1145/3571253.

25 Vasileios Klimis, Alastair F. Donaldson, Viktor Vafeiadis, John Wickerson, and Azalea Raad.
Challenges in Empirically Testing Memory Persistency Models. In ICSE-NIER, 2024.

26 Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan Mangard.
Armageddon: cache attacks on mobile devices. In Proceedings of the 25th USENIX Conference
on Security Symposium (SEC), 2016.

27 Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Manabi Khan. Pmfuzz: test case

generation for persistent memory programs. In ASPLOS, 2021.

41:25

ECOOP 2025

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3485497
https://doi.org/10.1145/3338843
https://doi.org/10.1145/3338843
https://louisjenkinscs.github.io/publications/PMAT_EA.pdf
https://louisjenkinscs.github.io/publications/PMAT_EA.pdf
https://pmem.io/blog/2015/07/an-introduction-to-pmemcheck-part-1-basics/
https://pmem.io/blog/2015/07/an-introduction-to-pmemcheck-part-1-basics/
https://doi.org/10.1145/3571253

41:26

Shouting at Memory: Where Did My Write Go?

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas F. Wenisch, Aasheesh Kolli, and
Samira Manabi Khan. Cross-failure bug detection in persistent memory programs. In
ASPLOS, 2020.

Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Manabi Khan. Pmtest: A
fast and flexible testing framework for persistent memory programs. In ASPLOS, 2019.
Robert Martin, John Demme, and Simha Sethumadhavan. Timewarp: rethinking timekeeping
and performance monitoring mechanisms to mitigate side-channel attacks. In Proceedings of
the 39th Annual International Symposium on Computer Architecture (ISCA), 2012.

Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and Michal Szynwelski.
Learning Nominal Automata. In POPL, 2017.

Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking. J. Autom. Lang.
Comb., 2001.

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Mangard.
DRAMA: Exploiting DRAM addressing for Cross-CPU attacks. In 25th USENIX Se-
curity Symposium (USENIX Security 16), pages 565-581, Austin, TX, August 2016.
USENIX Association. URL: https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/pessl.

Carl Petri and Wolfgang Reisig. Petri net, 2008. DOI: 10.4249/scholarpedia.6477. doi:
10.4249/SCHOLARPEDIA.6477.

Jean Pichon-Pharabod and Peter Sewell. A concurrency semantics for relaxed atomics that
permits optimisation and avoids thin-air executions. SIGPLAN Not., 2016.

Azalea Raad, Luc Maranget, and Viktor Vafeiadis. Extending intel-x86 consistency and
persistency: formalising the semantics of intel-x86 memory types and non-temporal stores.
Proc. ACM Program. Lang., 6(POPL), 2022. doi:10.1145/3498683.

Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. Persistency semantics of the
intel-x86 architecture. Proc. ACM Program. Lang., 4(POPL), 2020. doi:10.1145/3371079.
Azalea Raad, John Wickerson, and Viktor Vafeiadis. Weak persistency semantics from the
ground up: formalising the persistency semantics of armv8 and transactional models. Proc.
ACM Program. Lang., 3(OOPSLA), 2019. doi:10.1145/3360561.

Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. Understanding
POWER multiprocessors. In PLDI, 2011.

Steve Scargall. Persistent memory architecture. In Programming Persistent Memory: A
Comprehensive Guide for Developers, pages 11-30. Apress, 2020.

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen.
x86-TSO: a rigorous and usable programmer’s model for x86 multiprocessors. Commun. ACM,
53(7), 2010. doi:10.1145/1785414.1785443.

Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher Pulte, Richard Gris-
enthwaite, and Peter Sewell. Relaxed virtual memory in armv8-a. In ESOP, 2022.

Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Kopf. Cachequery: learning replacement
policies from hardware caches. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2020.

Glynn Winskel. Event structures. In Proceedings of an Advanced Course on Petri Nets:
Central Models and Their Properties, Advances in Petri Nets 1986-Part 11, 1986.

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://doi.org/10.4249/scholarpedia.6477
https://doi.org/10.4249/SCHOLARPEDIA.6477
https://doi.org/10.4249/SCHOLARPEDIA.6477
https://doi.org/10.1145/3498683
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://doi.org/10.1145/1785414.1785443

	1 Introduction
	2 Background
	3 Memory Echolocation
	3.1 Echolocation-Inspired Insight
	3.2 Timing as a Mapping Tool

	4 Learning Persistency Models
	4.1 Persistency Model Learning in Action
	4.2 Algorithmic Implementation of Persistency Learning

	5 Modelling Formalism
	5.1 Rationale for Choosing Event Structures
	5.2 Persistent Event Structures
	5.3 Alloy Encoding

	6 Implementation and Feasibility Demonstration
	6.1 Measurement Technique
	6.2 Feasibility Results
	6.3 Application to Persistence Validation

	7 Scope and Applicability
	8 Threats to Validation
	8.1 Accuracy of Echolocation as a Proxy for Crash Behaviours
	8.2 Coverage of System States and Edge Cases
	8.3 Assumptions in the Initial Model Hypothesis

	9 Related Work
	10 Conclusion and Future Work
	10.1 Future Work

	11 Data Availability Statement

